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Using Mazur's lemma we show that the coarse-grained variables used in 
nonequilibrium statistical mechanics are the Onsager's regression variables. With 
this result we find a regression law for the fluctuations which is both non- 
Markovian and nonlinear. Considering the Markovian approximation and gen- 
eralizing Onsager's ideas leading to the symmetry of the transport matrix, we 
formulate Mori and Fujisaka's method for the renormalization of transport 
coefficients due to nonlinear interactions. 
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1. I N T R O D U C T I O N  

In 1972 Zwanzig (1) presented a model  theory for the nonlinear  interactions 
of collective modes in fluids, which is equivalent to Kawasaki ' s  m o d e -  
mode  coupling theory/a)  In  Zwanzig 's  proposed model,  the equations of 
mot ion  of the phase functions are associated with the observables in a 
nonlinear  Langevin equation of the form 

dA(V, t) 
dt - v ( A ( r , t ) )  - ,~. A( r ,  t) + R ( r , t )  (1) 

where the streaming velocity v contains nonlinear  contributions in the 
phase functions, ~ is the "bare"  matrix for the transport  coefficients, and 
R(F, t )  is a fluctuating force which satisfies the f luctuation dissipation 

1 Department of Physics, U.A.M.-Iztapalapa, Mexico 13, D.F.; also at the Escuela Superior de 
F~sica y Matema.ticas del I.P.N., Zacatenco, M6xico 14, D.F. 

329 
0022-4715/84/0100-0329503.50/0 �9 1984 Plenum Publishing Corporation 



330 Rio 

relation, namely, 

<R(F, t)R(F, 0)) = 2qr(t) (2) 

Zwanzig obtained the Fokker-Planck equation associated with Eq. (1), 
rewrote this equation in terms of creation-destruction operators in such 
form that it is possible to use quantum field-theory methods, calculated the 
equilibrium time correlation function of dynamical variables, and finally 
comparing this result with the exact expression for the correlation function 
obtained from Mori's linear theory, (3) he showed that the linear transport 
matrix consists of two parts, one containing the bare matrix which relaxes 
rapidly compared with the hydrodynamic times and the second part which 
is the contribution of the nonlinear modes contained in the streaming 
velocity. Thus, 

•(r = 2~,6(t) + ~k(t) (3) 

where ~(t) is the time-dependent linear, transport matrix, and if(t) is the 
so-called renormalization matrix of the transport coefficients due to nonlin- 
ear interactions. 

After this work Mori and Fujisaka's paper (4~ appeared where using the 
projector operator method they justified from first principles the nonlinear 
Langevin equation proposed by Zwanzig and presented an alternative 
procedure for finding the renormalization of the transport coefficients. The 
physical ideas behind this calculation were greatly clarified in a paper by 
Garcia-Colin and Velasco. (5) 

The purpose of this paper is a twofold one: first, to show that the 
coarse-grained variables used in nonequilibrium statistical mechanics are 
the Onsager regression variables. (6~ Second, to show that the Mori- 
Fujisaka method is a generalization of Onsager's ideas leading to the 
symmetry of the transport matrix, in the nonlinear case. These results allow 
one to see the similarity between Zwanzig's and Mori and Fujisaka's 
methods of renormalization. 

The paper has the following structure: in Section 2 we give a brief 
review of the dynamics of coarse-grained variables, (v) and using Mazur's 
lemma (8~ we show that these variables are Onsager's regression variables. 
With this result we find the non-Markovian and nonlinear fluctuation's 
regression law for systems which are initially prepared in a constrained 
equilibrium state. In Section 3 we present an alternative procedure for 
obtaining Zwanzig's model equation and we discuss the meaning of the 
renormalization of the transport coefficients in the context of Onsager's 
regression law. Furthermore, we generalize step by step Onsager's ideas to 
the Markovian nonlinear case and obtain Mori and Fujisaka's result. In 
Section 4 we calculate for a simple model the renormalization of the 
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transport coefficients up to the second order in the nonlinear coupling 
constants. 

2. LAW OF REGRESSION FOR THE FLUCTUATIONS 

We begin our analysis with a brief review about the coarse grained 
variables which are used in several treatments of nonequilibrium statistical 
mechanics. (7) 

We denote by A(F, O) the complete set of phase functions associated 
with the macroscopic system's observables c~(t), i.e., 

faro(r, 0)A(r, t) (4) o~(t) 

where p(F, 0) is the initial nonequilibrium phase probability density and 
F -- (q, p). Another quantity of interest is g~e(al, tl; �9 �9 �9 ; ak, tk)dal �9 . �9 dak 
which is the probability that a i < A(F, t~) < a i + dai for i = 1 . . . . .  k. This 
quantity can be expressed as 

g~-~(al, t l ; . . .  ;ak,tk) 

= f d r o ( r , o ) 8 ( A ( r , t  3 - a , ) . . .  8(A(F, tk) - ak) (5) 

We can rewrite (4) in terms of gT-e(a, t) through the identity 

A(F, t) = fdaaS(A(r, ,  t) - a) (6) 

and obtain that 

a(t)  = f daag~e(a, t) (7) 

Using the relationship 

g~-e(a, t) = f db g~'e(b, 0)P,.e(a, t I b) (8) 

the macroscopic observables can be expressed as 

ar = f d b  g~'-'(b, 0) a(t) b (9) 

where a(t) b are the so-called coarse-grained variables, defined by 

a(t) b= fdaaPn_e(a, t[ b) (10) 

The time evolution equations for the a(t) b, can be found if we know 
the kinetic equation for Pn.e(a, t I b). This kinetic equation is obtained using 
the Liouville's equation of motion for the hypercell, (5) which is the way 
used by Mori and Fujisaka. In both cases Zwanzig's nonlinear projector 



332 Rio 

operator is used. Furthermore, in both methods the nonequilibrium initial 
distribution function corresponds to a constrained equilibrium state. In 
other words, 

lo(r, 0) = Peq(~')~(A(r, 0)) (11) 

Hence Peq(I') is the density distribution function in the final equilib- 
rium state and ~(A(F,0)) is any function of the phase functions with a 
convenient normalization. When we consider Zwanzig's method the kinetic 
equation for P~.e(a, t I b) is given by (v) 

0 Po_e(a, t l b) 
Ot - Z(a,t)P,.e(a,  t lb  ) (12) 

where Z(a, t) is Zwanzig's operator and (12) is a generalized Fokker-Planck 
equation. On the other hand when we consider the time evolution equation 
for the phase hypercell 8(A(F, t) - a) and follow in a systematic way Mori's 
technique (3) with Zwanzig's nonlinear projector operator (9) the kinetic 
equation takes the form (10) 

Oen.e(a, t [ b) 
Ot - A(b, t)P,_e(a, t I b) (13) 

where A(b, t) is Mori's operator which is the transpose of Z(a, t). Equation 
(13) corresponds to the generalized Kolomogorov equation or the backward 
kinetic equation. (~1) 

Thus with the two equivalent kinetic equations (12) and (13) it is 
possible to find the equation of motion for the coarse-grained variables. 
When we insert Eq. (12) into Eq. (10) we have that 

- - b  
0a(t) 

- foo'dsf da[ 2v(a)~(s) + c(a,s) ]e,_~(a,t- slb ) (14) -g 

where v(a) is the streaming velocity given by 

v(a) = <iLA(F, 0); a> (15) 

and c(a, s) is defined by 

c(a, s) = g~ql(a) ~a �9 geq(a)<R(F, t)R(r, 0); a> (16) 

where ( . . .  ; a> denotes the average over the hypercell characterized by the 
condition A(F, 0) = a, i.e., 

( . . .  ;a> = g2q'(a)fclrooq(r)... 8(A(F,0) - a) (17) 

With the purpose of displaying the meaning of Eq. (16) it is convenient 
to remember that when we rewrite the equation of motion of A (F, t) 
following Mori's technique but using Zwanzig's projector (see Appendix), 
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we obtain that 

dA (r,  t) 
at -s )+c(a,s)]8(A(Lt- s ) - a )  + R ( r , t )  

(18) 

where R(F, t) is an orthogonal function to any function of A(F, 0), and 
therefore (16) is the fluctuation-dissipation relation in the nonlinear case. 

Equation (18) is the basic equation used by Kawasaki in his mode-  
mode coupling theory, (2) and as was shown by Mori and Fujisaka, it leads, 
after some approximations to be discussed later to Zwanzig's model equa- 
tion (1). 

We can also obtain an alternative form of the equation of motion for 
the coarse-grained variables when we use the backward kinetic equation 
into Eq. (7) (7) 

da(t)  b 
dt - A(b,t)a(t)  b (19) 

Equation (19) is very important in Mori and Fujisaka's renormaliza- 
tion method as we shall see in the following section. Now we are in a 
position to discuss the fluctuation's regression law using the lelnma proved 
by Mazur, (s) namely, that if p(F, 0) = peq(F)dp(A(F, 0)) then the nonequilib- 
rium conditional probability is identical with the equilibrium conditional 
probability, i.e., 

Pn-e (a, t I b, t = 0) = Peq(a, t[ b) (20) 

a relation which holds true at t = 0 but not at all times (see Appendix). 
Mazur's lemma allows a connection between two alternative points of 

view in nonequilibrium statistical mechanics, the study of fluctuations 
around the equilibrium states, which is the point of view of Onsager, (6) 
M. S. Green, (12) Kubo, (13) and the study of the relaxation to the equilib- 
rium state of a system which is initially prepared in a constrained equilib- 
rium state and some of its constrictions are suddenly removed. This is the 
point of view adopted by Zwanzig, (9) and Mori and co-workers. (4'14) 

A trivial implication of Mazur's lemma is that the coarse-grained 
variables are identical with Onsager's regression variables. (6) In fact since 
these variables are defined as 

- - b =  fda aPeq(a, t [ b) (21) aR(t) 

Mazur's lemma implies that 

a(O -b= a - - ~  b (22) 
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Thus, the transport equations and the regression law are now given by 

(23) 

where K(a, s) is defined as 

K(a, s) = 2v(a)8 (s) + c(a, s) (24) 

The transport equation arises when we introduce Eq. (12) and Eq. (10) 
into Eq. (9) and use Eq. (8). Equation (23) shows that both equations are 
governed by the same function K(a, s) in the general nonlinear case. Also it 
is easy to see that in the special case in which K(a, s) is a function of the 
form 

K(a, s) = - M. a6(s) (25) 

where M is a constant matrix, Eq. (23) reduces to the familiar linear 
Onsager's regression law. Equation (23) may be regarded as a more general 
regression law whose structure depends on the explicit form of K(a, s). The 
other form of the regression law is obtained when we use Eqs. (19) and (22), 

- - b  
0aR(t) 

Ot - A(b , t )aR(t )  b (26) 

Eq. (26) is used in Mori and Fujisaka's method of the renormalization of 
the transport coefficients. 

. RENORMALIZATION OF THE TRANSPORT COEFFICIENTS 

We begin discussing the way in which Zwanzig's model equation is 
obtained from the exact evolution equation of the phase functions. 

In the Markovian approximation, namely, 

c(a,s) = 2e(a)8(s)= 2 I s  ) (27) 

Eq. (18) reduces to 

dA(F, t) 
- Iv(a) + e( . ) l*(A(r ,  t) - a) + R(F, t)  (28) 

dt 

We now define a mesoscopic inner product as 

( ( f (a ) ,  h (a)>> = fda geq(a)f(a) h (a) (29) 

and for simplicity we consider that ((ai,ai> > = 89. Introducing the meso- 
scopic linear projector operator 

P~ --~ ( (  , a>>. a (30) 
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we now state our second assumption, namely, that the nonlinear part of 
e(a) is an irrelevant one, 

e(a) ~ Pae(a) = ((e(a), a>>. a (31) 

Using now Eqs. (16), (17), and (29) we obtain that 

((c(a), a>> = - f0~(R(F,  t)R(F, 0)> dt = - ~ (32) 

where ( > denotes the average taken with Oeq(F). If we insert Eqs. (31) and 
(32) into (28) the equation of motion for the phase functions reduces to Eq. 
(1). The procedure presented here to obtain Zwanzig's model is different to 
Mori and Fujisaka's procedure and has the advantage of simplicity. 

Now we proceed with the problem of the renormalization of the 
transport coefficients and restrict ourselves to the Markovian case. 

The regression law takes then the two following alternative forms: 

0 aR(t) b 
3t =fda Iv(a) + e(a)]Peq(a,t Ib ) (33) 

O a R ~  b - - b  

~t - A(b) aR(t) (34) 

The first one is obtained from Eqs. (14) and (27), and the second one 
from Eq. (26). Here A(b) is the Markovian form for A(b, 0. (7) The form of 
the regression law given by (33) is the most convenient one for understand- 
ing the meaning of the basic equation in Mori and Fujisaka's method. For 
clarity purposes we first discuss the renormalization in terms of Eq. (33). 
The point is that both terms v(a) and e(a) contain linear and nonlinear 
contributions in a's variables which may be separated with the projector 
defined in Eq. (30): 

v(a) + e(a) = P~[v(a) + e(a)] + K'(a) (35) 

where K'(a) denotes the nonlinear part. 
Using Eqs. (15), (30), and (32) we obtain that 

Pa[v(a) + e(a)] = [C(0) - "~].a  (36) 

where C(t) is the time derivative of the correlation function. Thus Eq. (33) 
takes the form 

daR(t) b 
at --[C(O)--'Y] " ~ D  + f daK'(a)t"eq(a'tlb) (37) 

which is clearly a nonlinear regression law. 
The question that arises concerns now the contribution to the transport 

coefficients due to the nonlinear terms. This question can be formulated in 
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a more transparent form in terms of the time correlation function. From 
first principles we know that the exact equation of motion for the correla- 
tion function (3) is given by 

dC (t) 
ito- C(t) - footds ~(s). C(t - s) (38) dt 

where i~ = C(0) and q~(s) is the generalized matrix of the transport coeffi- 
cients. 

On the other hand we can obtain the time evolution of the correlation 
function from (37), using the fact that 

this leads to using Eqs. (39) and (37); we then get that 

dC(t)  

The problem now is to find the contribution of the second term in Eq, 
(40) to the matrix q~(s). To solve this problem we proceed using Mori and 
Fujisaka's method to understand the physical content behind this process, 
and generalize step by step Onsager's ideas leading to the symmetry of the 
matrix of transport coefficients, using Eq. (34), the nonlinear regression 
law. 

Onsager's first step was to introduce the linear regression law, namely, 
that the macroscopic variables satisfy the equation 

da(t) 
dt - M �9 t~(t) (41) 

then the regression law is given by 

daR(t) b 
~ -  M �9 aR(t) b (42) 

We now generalize this step using Eq. (34), rewriting this equation 
using Mori's identity, 

eQ- t = eO.tp + e(1-e)O-t(1 _ P )  

+ fotdseO(t-s~POe(l- e)Os(1 - P) (43) 

A 

where Q ) s  a time-independent operator and P is a projector operator, 
making Q = A(b) and P = Pb leads to 

daR(t) b - - b  
dt -- i ~ ' a R ( t )  -fo tds~(s)'aR(t- s)b+q(t) (44) 
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where 

i a  = ((A(b)b,  b ) )  (45a) 

if(t) = - ((A(b)q(t) ,  b ) )  (45b) 

q(t) = e ( ' -  e~ -- Pb)A(b)b (45c) 

and q(t) is orthogonal to b, ((q(t), b ) )  = 0. The following step in Onsager's 
derivation is to find the time evolution equation for the correlation func- 
tion, taking the inner product of Eq. (42) with b and using Eq. (39), then, 

de(t) 
- M �9 C(t) (46) 

whose solution is given by 

C(t )= kBe-Mt .g  ' (47) 

Here we used that C(0)=  keg-1,  k8 being Boltzmann's constant and 
g --- laZs/aa aal is a symmetric matrix. 

The generalization of this step is to find the equation of motion of the 
correlation function when we use the nonlinear regression law. Using Eqs. 
(39) and (44) we correspondingly find that 

dc(t) 
- i f~ .e ( t )  _ CjotdS ~ ( s ) .C ( t  - s) (48) 

dt 

which is the counterpart of Eq. (46). At this point it is convenient to say 
that when we introduce the explicit form of A(b) given in Ref. 14 and 
calculate if~ using (45a), we get that 

i~ = i ~ -  "~ (49) 

Comparing Eqs. (48) and (49) with Eq. (40) we see that the second 
term in the right-hand side of Eq. (48) contains the nonlinear contributions 
to the transport coefficients. 

The third step in Onsager's derivation is to make use of the micro- 
scopic definition for the correlation function 

= f d F  .eq(F)A(F, t)A(r,  0) (50) C(t) 

and show that due to the time reversal invariance of the mechanical 
equations of motion, it has the property that 

C(t) = CT(t) (51) 

when the phase functions are even in the velocities. 
The generalization of this step is given by Eq. (38) where we identified 

the matrix of transport coefficients with 4~(t). 
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The last step in Onsager's method is to demand that the phenomeno- 
logical expression for G(t) given by Eq. (47) satisfies the symmetry property 
(51) which is a microscopic result; the result of this requirement is that M 
satisfies the relation 

e - M t . g - l = g - l . e  

which implies that L = L r where 

L = M . g  - I  

-MS (52) 

(53) 
The generalization of this step is to demand that the exact time 

evolution equation of C(t), Eq. (38) is identical with Eq. (48). This require- 
ment implies that 

~(t) = 2[io~ - i a ]6 ( t )  + q~(t) (54) 

and if we introduce Eq. (49), then 

q)(t) = 2~8(t) + q)(t) (55) 

Therefore q)(t) defined by Eq. (45b) is the renormalization of the 
transport coefficients due to the nonlinear interactions. The form of if(t) 
can be calculated introducing the explicit form of A(b), (14) but for our 
purpose this is irrelevant. 

It is now clear that Mori and Fujisaka's method may be understood as 
a generalization of Onsager's ideas to the nonlinear case. Also this point of 
view allows one to establish a connection with Zwanzig's method, and the 
details of this will be given in a future communication. 

4. RENORMALIZATION IN A SIMPLE MODEL 

To illustrate the ideas presented in the previous sections, we now 
calculate the renormalization of the transport coefficients due to the 
nonlinear modes using a perturbation theory in the simple case in which (a) 
the equilibrium distribution geq(a) is Gaussian, i.e., 

geq(a)---Cexp(-- l~akak) (56) 

(b) R(F, t) is a Gaussian fluctuating force, and satisfies the fluctuation- 
dissipation theorem given by Eq. (2); (c) the streaming velocity v(a) is given 
by 

vk(a) = 2i~~ + 2 2 Vkl,~(aflm - (aflm)eq) (57) 
l l m 

where the coupling constants Vkl m obey the symmetry relationships 

Vkl m = Vkml ,  Vkl m + Vmk I Jr" Vlm k = 0 (58) 
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which are a consequence of the fact that v(a) satisfies the conditions 

<~)k ( a ) > e q  = 0 (59) 

~ vk(a)geq(a) = 0 (60) 
k u,~ k 

implied by the definition of the streaming velocity. (1'15) This model has 
been used by R. Zwanzig in several treatments of the renormalization of 
transport coefficients. (~'16'17) When the conditions (a) and (b) are satisfied, 
the explicit form of the A operator is given by (4'5) 

02 (61) 6(b)=[v(b)-~,'b l - ~ b  + 7 :  3bOb 

and (45b) takes the simple form (4'5) 

~(t)  = ( ( [ exp ( l  - Pb)A(b)t]v'(b), vl(b)) )  (62) 

If we consider that the nonlinear coupling constants V~t m are small, we can 
obtain a second-order perturbation expression for ~(t). This is accom- 
plished by separating the A(b) operator in the following form, namely, 

A(b) = Ao(b) + A,(b) (63) 

where A1(b ) contains the nonlinear contributions of the streaming velocity. 
Thus, 

32 (64) A0(b ) = [ ( / c o - ~ , ) - b ] . ~ - - ~ + ~ , :  ObOb 

At(b) = vl(b) - ~b (65) 

where v l (b )=  ( 1 -  Pb)v(b). Next the operator exp[ (1 -  Pb)A(b)t] is ex- 
panded in powers of Al(b ) 

e x p { ( 1 -  Pb)A(b)t} 

= exp(1 - Pb )Ao(b)t - fo 'ds exp[(1 - Pb )Ao(b)(t - s)] 

• (1 - Pb )Al(b)exp[(1 - Pb )Ao(b)s] + qS(A2) (66) 

After some algebraic manipulations one obtains that 

(1 - P b ) A o ( h b -  1) = O . ( b b -  1) + ( b b -  1) .  O r 

{ O, (bb - 1 ) ) (67) 

where use has been made of Eqs. (64), (30), and the symmetry property 
io~ = - i~o r, and the definition 

O = io~ - -~ (68) 
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Now we define the tensor A(t) in the form 

A(t) = exp [ ( 1 - Pb )Ao(b)t] (bb - 1 ) (69) 

and compute its time derivative with the use of Eq. (67). The result is that 

dA(t)  
dt = {O,A(t)) (70) 

whose solution is given by 

A(t) = (exp O t) .  A(0). (exp OTt) (71) 

as it can be easily verified. 
Introducing Eq. (66) into (62), and using the fact that 

v 2 (a) = ~ Vk, m (b,b~ - 6,m ) (72) 
lm 

as it is implied by Eqs. (56) and (57), we find the second-order expression 
for the renormalization matrix is 

~2) ( t )  = E E WilrnVjafl(([exp(1 - eb )A0(b)t] 
lm aft 

• m - 6tin ), (b~b B - ~ ) ) )  (73) 

Using Eq. (71) this expression conveniently reduces to 

+~2) (t) -- E E E Vilm Vj~ (exp Ot)/p(exp OTt)qm 
lm a B Pq 

• ((bpbq - 6eq )(b~b~ - 6~B ))eq (74) 

where use was made of Eq. (29). Finally using Eqs. (58) and the fact geq(b) 
is Gaussian, we obtain 

~(2) (t) = 2 ~ ~ Vil m Vj.a~ (exp Ot)/,(exp Ot)m B (75) 
lm aB 

A similar expression for the renormalization of the transport coeffi- 
cients was obtained by R. Zwanzig, (~7) using the Fokker-Planck equation, 
from which he obtained a hierarchy of equations coupling successive 
cumulants which is solved using a perturbation scheme, based in the fact 
that the nonlinear coupling constants are small. Also it is important to note 
that in the case in which the phase functions are even in the momenta 
C(O) = iw = 0 and if we assume that ~ is diagonal, i.e., 

7k, = "fkSk, (76) 

then Eq. (75) takes the form 

+~2)(t) = 2~] Vi,mVj,m[eXp -- ('~, + ~,m)t] (77) 
tm 
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which is the result found in Ref. 16. Clearly, the diagonal term is given by 

~b~'2)(t) = 2 ~ ] V/lml2[exp - (~'l + Tin) t ] (78) 
lm 

which is Zwanzig's result obtained via theoretical quantum-field methods. 
These results show the Mori-Fujisaka method and the variety of 

methods developed by Zwanzig and co-workers give the same results for 
the renormalization of the transport coefficients due to nonlinear interac- 
tions. 
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APPENDIX 

In this Appendix we outline the steps leading to Eq. (18) and to 
Mazur's lemma. 

We write the equation of motion for the phase functions A(F, t) in a 
form which resembles a nonlinear Langevin-type equation. Thus, we begin 
with equation 

dA(r, t) 
dt - iLA(F, t) = eirtiLA(F, 0) (A.1) 

where L is Liouville's operator. Now we use Zwanzig's projector operator 
defined by 

P~ = f d b (  ;b)a(A(F,0) - b) (A.2) 

Using Mori's identity, Eq. (43), with Q = iL and P = Pz, into Eq. (A.1) we 
obtain 

dA(r, t) 
dt - f d b v ( b ) a ( A ( r , t ) -  b) 

+ footdSfdb ( iLR(r ,s ) ;  h)a (A(r, t - s) - b) 

where we used Eq. (A.2), which implies that 

e iLtp~ iLA(F, O) = f d b  v(b) 6 (A(F, t) - b) 

and we defined 

R(F, t) = e(l-  S~)iLt(1 _ Pz )iLA(F, 0) 

+ R(F,t) (A.3) 

(A.4) 

(A.5) 
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Using the explicit form of the average over the hypercell given by Eq. (17), 
and the Hermitian property of the Pz and L operators, it is possible to show 
that 

( iLR(F,s) ;  b) = geq(b)-'~-~ �9 (R(F, s)R(F, 0); b)g~q(b) = e(b, s) (A.6) 

Finally introducing this result into Eq. (A.3), we obtain immediately Eq. 
(18). 

To show Mazur's lemma, we use the definition of the nonequilibrium 
conditional probability 

Pn.e (a, t I b) = [ g{'-e(b, 0)] - '  g~-e(a, t; b, 0) (A.7) 

Using Eq. (5) and the fact that the initial phase distribution function has 
the form 

we have that 

o(r, 0) = Oeq(r)O(A(L 0)) (A.8) 

n-e :a t" g2 [ , , b, 0) = 6P(b)g~q(a, t; b, 0) (A.9) 

g~'e(b, 0) = 6P(b)geq(b ) (A. 10) 

Putting Eqs. (A.9) and (A.10) into Eq. (A.7) we obtain 

Pn.e(a,t Ib ) =[geq(b)]-~g~q(a,t;b,O) = Peq(a,t Ib ) (A.11) 

which is Mazur's lemma. 
Due to the fact that the nonequilibrium conditional probability is not 

stationary, it is clear that P~.e(a, t 21 b, t l )  @ Peq(a, t 2 - t 1 [ b, 0). O n  the other 
hand Peq(a, t2lb, tO is stationary, because this is weighted with Oeq(F). 
Therefore Pn_e(a, t21 b, tl) =/= Peq(a, t 2 [b, tl), implying that the equality be- 
tween the nonequilibrium and equilibrium conditional probability is only 
valid when t I = 0, but not for arbitrary values of time. 
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